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Scalar model of inhomogeneous elastic and granular media

M. L. Nguyen and S. N. Coppersmith
The James Franck Institute and Department of Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois

~Received 1 May 2000!

We investigate theoretically how the stress propagation characteristics of granular materials evolve as they
are subjected to increasing pressures, comparing the results of a two-dimensional scalar lattice model to those
of a molecular dynamics simulation of slightly polydisperse disks. We characterize the statistical properties of
the forces using the force histogram and a two-point spatial correlation function of the forces. For the lattice
model, in the granular limit the force histogram has an exponential tail at large forces, while in the elastic
regime the force histogram is much narrower, and has a form that depends on the realization of disorder in the
model. The behavior of the force histogram in the molecular dynamics simulations as the pressure is increased
is very similar to that displayed by the lattice model. In contrast, the spatial correlations evolve qualitatively
differently in the lattice model and in the molecular dynamics simulations. For the lattice model, in the granular
limit there are no in-plane stress-stress correlations, whereas in the molecular dynamics simulation significant
in-plane correlations persist to the lowest pressures studied.

PACS number~s!: 45.70.Cc, 46.65.1g
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I. INTRODUCTION

Stress transmission in dry granular media is unusual
cause in these materials no simple relation exists betw
stress and strain@1–5#. Physical ingredients that give rise t
this are that there are no tensile forces, that the particle
formations are very small, and that the particles can re
range@6#. Over the last several years evidence has accu
lated that force propagation in dry granular media could
fundamentally different than in elastic solids@3–5, 7–9#.
Equations that have been proposed to describe stress
lightly loaded granular media have the property that spec
cation of boundary conditions at the top surface of the s
tem is sufficient to determine the stresses through
@4,5,7,8–11#, in marked contrast to the elliptic equations
elasticity theory.

However, applying a large enough uniform pressure t
granular material will cause it to exhibit an elastic line
response to a small additional stress. This is because uni
pressure both inhibits rearrangements~because it suppresse
Reynolds dilatancy! and compresses the contacts, so that
nontensile constraint on the interparticle forces becomes
relevant. Thus, if stress propagation in lightly loaded gra
lar media is indeed substantially different than in elastic m
dia, then subjecting the material to high pressures w
fundamentally change the stress propagation characteris

This paper theoretically investigates the stress propa
tion in granular materials as they are subjected to increa
pressures. The goals of this work are to understand the ph
cal mechanisms governing the evolution between gran
and elastic behavior, and to make specific experimental
dictions for the behavior of granular media under increas
loads.

We study a two-dimensional model system and comp
the results to molecular dynamics~MD! simulations of two-
dimensional systems of slightly polydisperse disks. Num
cal studies of statistical models of granular media, wh
geometrical complexity is modeled in terms of uncorrela
random variables, are much faster and simpler than mole
PRE 621063-651X/2000/62~4!/5248~15!/$15.00
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lar dynamics simulations. Models of this type hold promi
as a means to obtaining insight into the physics underly
the force propagation in granular materials. Our model
the granular regime is the two-dimensional scalarq model
@10,11#. Though theq model has deficiencies@12#, it is at-
tractive because of its simplicity, and its prediction of
exponential tail in the probability distribution of stress with
a packing agrees with experiments@13–15# and with simu-
lations @16–21#. Our model for the elastic regime is a ne
work of springs with a regular topology, with disorder intro
duced via randomly chosen spring constants@22–25#. To
model the crossover between the two regimes, we exploit
observation that theq model can be written as a scalar elas
network subject to certain constraints. Enforcing these c
straints to an increasing degree, which causes the fo
propagation behavior to evolve from that of an elastic syst
to that of theq model, models the crossover between elas
and granular behavior by a particulate assemblage subje
to decreasing pressure.

We test the lattice model by comparing the results fro
the model to those of our MD simulations of two
dimensional systems of slightly polydisperse disks, focus
primarily on the probability distribution of stresses and
the two-point stress-stress correlation functions. The res
of this investigation are mixed. The crossover in the for
histogram between the elastic network and theq model is
strikingly similar to the crossover observed in the molecu
dynamics simulations as the pressure on the system is
creased. However, the lattice model and the molecular
namics simulation exhibit qualitatively different trends in th
behavior of the two-point correlation functions of the stre

The paper is organized as follows: Section II defines
scalar networks that we investigate. Section III details
process of generation, solution, and analysis of these
works, and discusses the generation of the molecular dyn
ics simulations of slightly polydisperse disks. Section IV r
ports the results of the force distributions and spa
correlation functions for both the scalar lattice model and
MD simulations. Section V compares the results of the sca
5248 ©2000 The American Physical Society
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lattice model, the MD simulations, and relevant experimen
Section VI summarizes and interprets our results. The
pendix calculates a finite-size correction to the in-pla
stress-stress spatial correlation function for theq model that
is relevant to the interpretation of our numerical results.

II. SCALAR ELASTIC NETWORKS AND THE Q MODEL

This section discusses the relationship between thq
model and the elastic network studied in this paper. B
models are scalar and are defined on a two-dimensiona
tice. A scalar model is appropriate for a spring network
either the the network is very highly stretched@22,23,26#, or
if the motions are constrained so that displacements are
directional@25#. We consider the second situation and den
the direction along which the motion occurs asŷ, with posi-
tive y pointing downward.

Consider a network of nodes connected by springs o
diamond lattice as shown in Fig. 1, where the motion
every node is constrained to be along the vertical directioŷ.
Each spring has the same unstretched length, so that in
limit of zero load the system forms a regular lattice. T
springs connecting the nodes have spring constants tha
chosen independently from a fixed probability distributio
Periodic boundary conditions are imposed in the horizon
direction, and the locations of the nodes at the top and
tom boundaries are fixed so that the vertical displacemen
all the nodes in these rows relative to the unloaded confi
ration are identical. We index the nodes so that a node
column j in a row i with odd ~even! i lies along the same

FIG. 1. Elastic network considered in this paper. Each nod
connected to two neighbors in the row above and to two neighb
in the row below, with movement confined to the vertical directio
A node (i , j ) and its surrounding nodes have been labeled. T
system is compressed by holding the top and bottom rows eac
fixed positions. Disorder in the stress distribution is introduced
variation of individual spring constantsk. In the elastic regime thek
values are chosen at random, while in the granular regime thek’s
are additionally constrained so that the strain in each row is c
stant.
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vertical line as the other nodes in columnj in rows with odd
~even! indices.

Let yi , j be the position of the node in rowi and columnj
measured relative to its location in the absence of a load,
let ki , j

l and ki , j
r be the spring constants of the springs em

nating downward from the node at rowi and columnj. Every
spring obeys Hooke’s law, so thatf i , j

l and f i , j
r , the forces

exerted on node (i , j ) by the left and right springs below th
node, areki , j

l (yi , j2yi 11,j 21) andki , j
r (yi , j2yi 11,j ) for odd i

@ki , j
l (yi , j2yi 11,j ) and ki , j

r (yi , j2yi 11,j 11) for even i #. The
system is then compressed by settingy1,j5(Ly21)DY and
yLy , j50 for all j, where rows 1 andLy are the top and

bottom rows, respectively, andDY is the average strain. We
defineFi , j to be the total vertical force incident from abov
on node (i , j ), so thatFi , j5 f i 21,j 21

r 1 f i 21,j
l . The forces and

displacements are determined by balancing the forces a
ery node,Fi , j5 f i , j

l 1 f i , j
r , and requiring that eachyi , j be well

defined. This latter condition can be written asS52@d#Y;
hereS is the strain andY is the displacement field@27#.

In our spring networks, each spring constant has a va
selected independently at random from various probab
distributions that are described below. We obtain the for
and strains along each link of each network using the met
outlined in Ref.@27#.

This scalar elastic model is equivalent to a resistor n
work @22,23,25#. Forces and strains in the elastic system c
respond to currents and voltages, respectively, in the res
network. The requirement that the vertical forces at ea
node balance is equivalent to Kirchhoff’s current law, wh
the requirement that the position of each node is well defi
is equivalent to Kirchhoff’s voltage law.

Comparison between the elastic model and theq model

The forceFi , j incident from above on node (i , j ) is trans-
mitted to the sites below in the two piecesf i , j

l and f i , j
r .

Because of force balance, one can always write

f i , j
l 5qi , jFi , j , f i , j

r 5~12qi , j !Fi , j . ~1!

In a q model, qi , j ’s are random variables that are chos
independently at every site. In an elastic network, Eq.~1!
still holds, butqi , j are determined by the configuration o
random spring constants together with the requirement
the displacement field be single valued. For spring consta
that are chosen independently, the force along any bra
will depend on the values of the spring constants through
the system. Important consequences of this nonlocality
clude the presence of spatial correlations between theqi , j ’s
and a nontrivial relation between the distribution of spri
constants and the distribution of theq’s, including possibly
the presence ofq’s that are negative, indicating the appea
ance of tensile forces in the network.

A key observation underlying our work is that theq
model is equivalent to an elastic network subject to the c
straint that the strain on every spring in each row is identic
The strain need not be constant from one row to the next,
it is simplest to consider the case in which it is. Let t
amount of strain beDY. Given the total force incident on
node (i , j ) from above,Fi , j , if one chooses the spring con
stants to be
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ki , j
l 5

qi , jFi , j

DY
, ki , j

r 5
~12qi , j !Fi , j

DY
, ~2!

then the force exerted down the left link emanating fro
node (i , j ) is ki , j

l DY5qi , jFi , j , and the force exerted dow
the right link from node (i , j ) is ki , j

r DY5(12qi , j )Fi , j . This
force redistribution rule is exactly that of theq model. Given
the set ofqi , j values and the forces at each node in the
row of the system, we can create an equivalent spring
work in a layer-by-layer manner.

We do not implement explicitly a no-tensile force co
straint in our networks, in contrast to the work of Refs.@24#
and@25#. However, in theq-model limit, there are no tensile
forces. Our molecular dynamics simulations of lightly load
material yield force distributions much closer to that of theq
model than to those of the nontensile elastic networks of R
@25#.

To study the crossover between elastic andq-model be-
havior, we iteratively generate a sequence of networks
interpolate between the elastic andq-model limits. The pro-
cedure adjusts the spring constants to make the strain in
system more uniform while keeping the ratio of spring co
stants emanating from each node constant. At iterationn, the
spring constantski , j

l (n) andki , j
r (n) are set to

ki , j
l ~n!5

Fi , j~n21!

DY
qi , j , ~3a!

ki , j
r ~n!5

Fi , j~n21!

DY
~12qi , j !, ~3b!

whereFi , j (n21) is the force through node (i , j ) at iteration
n21. All qi , j ’s are kept fixed, and the iteration procedure
started withFi , j (0)51.

To characterize the crossover between elastic
q-model behavior as the iteration proceeds, we need to q
tify the degree to which the constant-strain constraint is v
lated. We use as our measure of the spatial variation in
strain the dimensionless quantity

dSN

[

1

2Lx~Ly21!
(
i 51

Ly21

(
j 51

Lx

„~dYi , j
l 2dȲ!21~dYi , j

r 2dȲ!2
…

dY2̄
,

~4!

wheredYi , j
l 5Yi , j2Yi 11,j 21 anddYi , j

r 5Yi , j2Yi 11,j for odd
i (dYi , j

l 5Yi , j2Yi 11,j anddYi , j
r 5Yi , j2Yi 11,j 11 for eveni ),

and

dȲ5
1

Lx~Ly21! (
i 51

Ly21

(
j 51

Lx 1

2
~dYi , j

l 1dYi , j
r !5DY. ~5!

HereLy andLx are the number of rows and columns, resp
tively. In the elastic limitdSN'0.2, and as discussed abov
dSN is zero for theq model.
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III. METHODS

A. Scalar lattice model

We consider diamond-shaped lattices with springs
each link, as shown in Fig. 1. The positions of the top a
bottom node layers are fixed, and periodic boundary con
tions are imposed in the transverse direction. The for
along all the links depend on the choice of spring consta
$ki , j%, and are calculated using the node-potential meth
described in Ref.@27#. The overall strain for each network i
scaled so that the average vertical force through each no
normalized to unity,

F̄[
1

LxLy
(
i 51

Ly

(
j 51

Lx

Fi , j51, ~6!

where the sum is over the nodes in the network.
Networks of heightLy5500 are used, with analysis pe

formed on separate groups of layers to distinguish betw
edge and bulk effects. The widthsLx516 and 128 are pow-
ers of 2 in order to take advantage of fast Fourier transfo
~FFT! techniques in the calculation of spatial correlati
function values described below. The number of realizatio
averaged over varies from 10 to 50, depending on lattice
and number of iterations.

For the elastic regime, we use four different distributio
of spring constants: uniform distribution ofk21 for k21

P(0,1), Gaussian distribution ofk21 with the configuration
averagek21̄51 and standard deviationsk2150.5, uniform
distribution ofk with kP(0,1), and Gaussian distribution o
k with k̄51 and sk50.5. We construct networks withLx
516 and 128 with 50 and 25 realizations, respectively.

For theq-model regime, a uniform distribution ofq with
qP(0,1) is used. We implement the iterative scheme w
networks of sizeLx516 and 128, with 50 and 10 realiza
tions, respectively, for 100 iterations. The relatively sm
width, Lx516, allows for the diffusive decay of correlation
that can be introduced at the top and bottom bounda
within the interior regions ofLy5500 systems, as will be
discussed below in Sec. IV.

The local stress redistribution in a real granular mate
depends on microscopic details such as particle shape,
tion characteristics, and preparation history. Instead of
tempting to model the local force redistribution rules micr
scopically, our statistical models treat them as rand
variables chosen from different probability distribution
Since these probability distributions are not knowna priori,
we wish to identify and study properties that are not sensi
to the choice of the probability distribution governing th
local force redistribution in the model. We focus onP(F),
the probability distribution of stresses at the nodes;P̃(q), the
probability distribution of the redistribution fractionsq; and
the spatial correlation functions of the force fluctuatio
about the mean values@28#,

Ck~ j !5
1

Ly2k (
l 51

Ly2k S (
m51

Lx

dFl ,mdFl 1k,m1 j

(
m51

Lx

dFl ,m
2 D ,
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C̃k~ j !5
1

Ly2k (
l 51

Ly2k S (
m51

Lx

dql ,mdql 1k,m1 j

(
m51

Lx

dql ,m
2 D , ~7!

where dFi , j5Fi , j2F̄ and dqi , j5qi , j2q̄;F̄ is the average
force, andq̄ is the averageq value. The indicesl and m in
Eq. ~7! label layers and columns, respectively, whilek and j
are the spatial separation in layers and columns. These
relation functions are normalized so thatC0(0)51 and
C̃0(0)51. Positive values~correlation! indicate a tendency
for nodes separated byk rows vertically andj columns hori-
zontally to be either both above or both below the me
while negative values~anticorrelation! indicates opposite be
haviors of one above and one below the mean.

B. Molecular dynamics simulations

Here we discuss our MD simulations used to gener
two-dimensional~2D! packings of disks. Varying the ratio o
external load pressure to particle stiffness induces cross
between granular and elastic behavior. We calculate
probability distributions and corresponding spatial corre
tion function values for forces and redistribution fractionsq
that are analogous to those in the scalar model. Our sim
tions employ a method similar to that used by the authors
Refs. @29–31# for sheared foams, incorporating kinetic fric
tion, contact damping, and particle rotation, and using t
different repulsive interparticle force laws~linear and Hert-
zian!.

1. MD interaction rules

The disks in our simulation are all of identical massmD
51, and interact via purely repulsive normal contact forc
and kinetic friction. The interaction force between two dis
whose centers are at positionsrW andrW j with radii ai andaj is
nonzero only if their separationdr i , j<0, where

dr i , j5urW i2rW j u2~ai1aj !. ~8!

The normal contact forceFi , j is calculated from the overlap
udr i , j u. We examine two force laws. The first is a linear for
law based on a springlike restoring force that yields

Fi , j5Ki , j udr i , j u, ~9!

with Ki , j5(1/Ki11/K j )
21, whereKd is the spring constan

for disk d. The second is a nonlinear force law based
Hertzian contacts between spheres@32#,

Fi , j
[HC]5D21S 1

ai
1

1

aj
D 21/2

udr i j u3/2, ~10!

whereD5 3
2 „(12s2)/E…, with s and E being the material

properties Poisson’s ratio and Young’s modulus, resp
tively. For both force laws, the forces are directed so as
separate the overlapping disks. To calculate forces gener
by interactions with walls, we assume the walls to be di
of infinite radius.
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Kinetic friction is incorporated into the disk interaction
although static friction is not. The introduction of frictiona
forces causes the disks to rotate; however, the frictional fo
is zero at mechanical equilibrium. The kinetic friction forc
f i , j for contact between disksi and j is

f i , j5mFi , j , ~11!

wherem is the coefficient of kinetic friction, and is directe
opposite to the contact point velocityvW i , j

cp . For disk i, this

velocity vW i , j
cp is related to disk velocitiesvW i andvW j , the angu-

lar velocities v i and v j , and directional vectorr̂ 5(rW i

2rW j )/urW i2rW j u by

vW i , j
cp5vW i , j2~vW i , j• r̂ ! r̂ 1~aivW i1ajvW j !3 r̂ , ~12!

wherevW i , j5vW i2vW j .
Damping during contact between disksi and j is used as

an additional means of dissipating kinetic energy. It is ge
erated by applying to diski a forceFD and torqueGD given
by

FD52l transv i8 , ~13a!

GD52langv i8 , ~13b!

wherev i8 is the translational velocity of disci relative to the
interaction center of mass for the two disksi andj that are in
contact, andv i8 is its angular velocity relative to the tota
angular momentum of the disk pair.l transandlangare damp-
ing constants. This process conserves both translational
angular momentum. Energy is directly removed from t
system as opposed to being converted between translat
and rotational motion.

The bottom and top walls have massmW and are con-
strained to move only vertically. An inward force of magn
tude Fwall is applied to each wall in order to compress t
system. Damping of the wall motion suppresses volume
cillations, and serves as the primary means of energy d
pation. The damping forceFWD on a wall is

FWD52lWvW , ~14!

where vW is the velocity of the wall andlW is the wall
damping constant.

2. MD implementation

Ensembles of systems ofN51024 disks of average radiu
aD are generated by starting with triangular array ofAN
rows andAN disks per row placed in a horizontally period
system with both height and widthL52.273aDAN. For the
data shown here, disks are placed in the system at posit
„L(nx10.05)/AN,L(ny10.5)/AN… for odd ny and „L(nx

10.55)/AN,L(ny10.5)/AN… for even ny , with indicesnx

and ny running from 0 toAN21. In practice, disks with
Gaussian distributed polydispersity ofsa50.1aD placed on
this triangular array do not overlap. The results obtained
not sensitive to initial disk placement. The system is th
compressed by the application of an inward force on the
and bottom walls. All disks have the same spring const
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Kd[K51. The coefficient describing wall damping is set
lW /mW51. Damping coefficients for translational and a
gular motion for disk contacts are set tol trans/mD51 and
lang/I D54.1, whereI D5 1

2 mDaD
2 is the moment of inertia

for a disk with radiusaD . The coefficient of kinetic friction
is set tom50.2 for both disk-disk and disk-wall contact
Comparisons with samples produced without disk-con
damping or kinetic friction revealed no measurable diff
ences in force probability distributions or in the two-poi
force correlation function. Incorporating additional energ
dissipation mechanisms allows systems to reach mecha
equilibrium more rapidly. The end time for each compre
sion stage is chosen so that the average residual kinetic
ergy for each disk is equivalent to translational movemen
approximately or less than 0.01aD in unit time. Because of
the increased external energy input, systems at higher c
pressions are allowed a less restrictive limit of approximat
0.05aD . Visual inspection of final configurations do not r
veal significant fluctuations in time in contact network top
ogy or force magnitude in load-bearing structures. Comp
sons with test systems with longer run times also do
show any significant quantitative differences.

For a system of fixed sizeL, the typical compression o
the system can be controlled through variations in the d
spring constantK or applied external forceFwall . Typical
relative particle deformationsdR is given by

dR[
1

NC
(
( i , j )

udr i , j u
~ai1aj !

5
1

NC
(
( i , j )

Fi , j

Ki , j
~ai1aj !

21

'

FwallS L

aD
D 21

K

2

~2aD!215
Fwall

LK
5

P

K
, ~15!

whereNC is the total number of contacts, the sums are o
pairs of disksi and j in contact, andP[Fwall /L is the ex-
ternal pressure. This estimate is approximate due to geo
ric factors and distributional fluctuations; however, the sc
ing of deformations toP/K should hold generally. In ou
simulations, the disk spring constantK is held fixed and the
pressureP is varied to induce crossover between granu
and elastic behaviors. We define the reference pressurP
5P0 such that the relative particle deformationdR'6.25
31024. The reference compression pressureP0 yields a
force histogram typical of the granular range, as discus
below in Sec. IV. After the initial compression withP
5P0, the applied pressure is increased in stages toP
5100P0, at whichdR'0.01. We also decrease the press
from the initial P5P0 configuration down to P
50.01P0(dR'1026) in order to approach the zero
deformation limit. Figure 2 shows a sample MD system s
jected to the pressures 0.1P0 ,P0 ,10P0, and 50P0.

For spheres with Hertzian contacts@using Eq.~10!#, the
deformation can be approximated bydR[HC]'(PD/2aD)2/3.
For our simulationsD is chosen to yield deformations of th
same order of magnitude as the linear contacts at the c
pressionP5P0. The pressures studied are the same as
the linear spring contact systems.
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IV. RESULTS

A. Scalar lattice model

Here we present our results for the scalar lattice mod
We study how the probability distribution of total vertica
force F incident on a node from aboveP(F) and the two-
point force correlation functionCk( j ) characterize the be
havior in scalar elastic lattice networks in which th
constant-strain constraint is enforced to varying degrees
the q model bothP(F) and the in-plane force-force correla
tion function C0( j ) exhibit robust behaviors for generi
choices of probability distributions ofq’s. We investigate the
degree to which these quantities depend on the choice
spring constant distributions in the elastic networks, and d
cuss the crossover ofP(F) and C0( j ) between the elastic
and q-model behavior as the constant-strain constraint
implemented with increasing accuracy.

1. Results for theq model

In the q model, the force histogramP(F) decays expo-
nentially at large forces@11#, andC0( j ) is zero for nonzeroj
@11,33,34#. These properties hold for a wide variety o
choices of the distribution ofq values.

Our results for the crossover from elastic toq-model be-
havior are obtained for the specific choice that theq’s are
uniformly distributed in@0,1#. A two-dimensionalq model
with this distribution ofq’s yields @11#

P~F !54Fe22F. ~16!

For a system of infinite lateral extent, the in-plane forc
force correlation functionC0( j )5d j 0 whered j 0 is the Kro-
neckerd function@11#. For a system of finite widthLx , force
correlations must arise because all forces are positive,
the total force through a layer is fixed. As discussed in
Appendix, assuming that this mechanism is the only one g
ing rise to correlations, one obtains that a 2D system of
eral extentLx hasC0( j ) given by

C0~ j Þ0!52~Lx21!21. ~17!

This form forC0( j ) agrees with our numerical results for th
q model on lattices of finite width.

2. Elastic networks

For elastic networks with different distributions of sprin
constants, the probability distribution of vertical forceP(F),
shown in Fig. 3, is narrower than that of theq model. Its
functional form depends on the choice of spring const
distribution. Choosing the spring constantsk from a distribu-
tion either uniform ink or Gaussian ink yields P(F)’s that
are roughly Gaussian while theP(F)’s for networks for dis-
tributions uniformly distributed or Gaussian ink21 display a
tail at largeF that is consistent with an exponential deca
Networks with Gaussian distributedk or k21 exhibit nar-
rower P(F)’s than their counterparts with uniformly distrib
utedk or k21.

In contrast to the behavior of the force probability dist
bution P(F), the force-force correlation function value
Ck( j ) are quantitatively indistinguishable for all the distrib
tions of spring constants that we examined, as shown in
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FIG. 2. Contact networks of a sample MD-generated packing of 1024 disks for different values of applied external pressureP. The
reference pressureP0 is such that the average fractional change in particle radius at a contact is 6.2531024. In the transition from granular
to elastic behavior, the number of contacts in the system increases, and the magnitudes of the contact forces become more hom
While the width of contacts shown is a proportional to the force magnitude, they have been rescaled for each pressure, so direct co
between subfigures is not possible.

FIG. 3. Force probability distributionP(F) for 128-column random spring configurations. The form ofP(F) in the elastic regime
depends on the distribution of spring constant valuesk. However, theseP(F)’s for all distributions of k occupy a narrow range in
comparison with theq-model granular regime result shown by the solid gray line.~a! uniform k21; ~b! Gaussiank21; ~c! uniform k; ~d!
Gaussiank. We fit the functional formP(F)}FAe2BF to the randomk21 distributions with A56.67 andB57.95 for the uniform

distribution andA514.70 andB516.21 for the Gaussian distribution. For the randomk distributions, we fitP(F)}e(F21)2/S2
, with S

50.47 for the uniform distribution andS50.32 for the Gaussian distribution. No differences are seen between layer groups near th
or in the bulk of the systems.
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4. For C0( j ), the force-force correlation function within th
same layer, we see a strong anticorrelation forj 51 of mag-
nitude;0.30 that decays withinj <8. For a vertical separa
tion k.0, we see a simultaneous reduction in peak mag
tude ~at j 50) and a broadening of peak width, but with th
anticorrelation signature and decay joining the curve laid
by k50. This correlation behavior arises because it is en
getically favorable; it enables stress to avoid the abnorm
strong springs and to be directed toward the abnorm
weak springs.

The probability distributions of the redistribution fractio
q,P̃(q), shown in Fig. 5, are roughly Gaussian and peake

FIG. 4. Spatial force-force correlation functionCk( j ) for the
forces within the bulk layer grouping~layers 201–300! in 128-
column elastic-regime scalar networks. In-plane correlationsC0( j )
are shown in the main plot, while the vertical correlation peak
cay given byCk(0) is shown in the inset. An observed neare
neighbor in-plane anticorrelation appears to be robust with res
to variations in spring constant distributions. The vertical corre
tion is similarly robust.

FIG. 5. Force fraction probability distributionP̃(q) within the
bulk layer grouping ~layers 201–300! for 128-column elastic-
regime scalar networks. The fits are Gaussians peaked atq50.5,
with the width being dependent on the spring constant distributio
Gaussian distributedk21 and k configurations are narrower~with
widthss'0.16 and 0.15, respectively! than their uniformly distrib-
uted counterparts~randomk,s'0.25; and randomk21,s'0.21).
i-

t
r-
ly
ly

at

q5q̄[0.5 for all distributions of spring constants examine
The widths ofP̃(q) depend on the choice of distribution o
spring constants, with the Gaussian distributedk and k21

once again narrower~standard deviationssq'0.16 and 0.15,
respectively! than their uniformly distributed counterpar
(sq'0.25 for randomk andsq'0.21 for randomk21). All
of the elastic networks display significant correlations b
tweenq’s at different nodes as demonstrated in Fig. 6, wh
shows the correlation functionC̃k( j ) for all the random dis-
tributions. The correlations betweenq’s are an important fac-
tor in determining the statistical distribution of the forces
these systems; Fig. 7 shows that aq-model system with the

-
-
ct
-

s.

FIG. 6. The two-point spatial correlation functionC̃k( j ) for the
force fractionq within the bulk layer grouping~layers 201–300! in
128-column elastic-regime scalar networks. In-plane correlati

C̃0( j ) are shown in the main plot with vertical correlationsC̃k(0) in
the inset. As with the force-force correlations, varying the spr
constant distribution has a minimal effect on these correlations

FIG. 7. Effect of spatial correlation ofq values on the probabil-
ity distribution of forceP(F). Force fraction probability distribu-

tions P̃(q) of the uniform distribution ofk elastic network, and a
q-model system generated by choosingq values from a Gaussian
distribution centered atq50.5 with width sq50.25, are shown in

the inset. While the twoP̃(q) distributions appear nearly identica
the spatial correlations in the elastic network yield a functiona
different form for the probability distribution of forcesP(F) than
that of the uncorrelatedq-model system.
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FIG. 8. ~a! Force probability distributionP(F) at various stages of iteration for the bottom layer grouping~401–500! of an ensemble of
16-column scalar networks. InitiallyP(F) is similar to the distribution for uniformly distributedk systems, shown by the grey dashed lin
The distribution broadens with increasing iterations with smallF agreement with granularq-model systems being achieved on order of
iterations. Further iterations are necessary to approach agreement for large values ofF. TheP(F) distribution forq-model systems is shown

by the black dashed line.~b! Force fraction probability distributionP̃(q) at corresponding stages of iteration. The distribution ofq values
approaches the expected uniform distribution within the first ten iterations.
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sameP̃(q) as an elastic network with a uniform distributio
of k but with no correlations between theq’s yields aP(F)
markedly different from the elastic network.

No differences between the bulk~layers 201–300! and
edge~layers 1–100 and 401–500! sections are detected i
the distributionsP(F) and P̃(q) or the correlation functions
Ck( j ) andC̃k( j ). The results for lattices withLx516 are the
same within statistical errors to the results fromLx5128
lattices.

In the elastic networks, forces in less than 1% of t
branches are tensile, and no node in any of the network
subject to a tensile net force. Our results forP(F) for uni-
formly distributedk’s are very similar to those reported b
Sextonet al. @25#, where a nontensile force constraint is e
forced.

3. Iterated networks—theq-model limit

We now discuss networks generated by our iterative a
rithm for converting an elastic network to aq-model system.
First we verify that the generated networks eventually c
verge to theq model. After 100 iterations, the forces alon
the links of the iterated spring network are identical to tho
of the correspondingq model to within 1024.

A subtle point in the method is that our iterative sche
yields a configuration in which the forces at the top a
bottom boundaries of the iterated network may have nonz
spatial correlations, as the initial iterationn50 system is
elastic. As one proceeds away from the top and bott
boundaries, these correlations decay via a diffusive proc
that takes on the order ofLx

2 layers @11#. Thus forces at
different sites in the same layer are effectively uncorrela
only for systems with large aspect ratios. This result is c
sistent with our numerical observation that in fully iterat
systems, correlations between forces at different sites in
same layer are present throughout theLx5128 systems,
while they are only present in the topmost and bottomm
200 layers ofLx516 systems.
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4. Iterated networks—crossover between
elastic andq-model behavior

In the iterated networks the target values of theqi , j are
fixed at the outset of iteration procedure. The initial sta
~zeroth iteration! is an elastic network with spring constan
given by ki , j

l 5qi , j /DY and ki , j
r 5(12qi , j )/DY. Therefore,

the initial probability of node forcesP(F) and the spatial
correlation functionC0( j ) are those of elastic networks wit
spring constants chosen from a uniform distribution ofk. The

realizedq distributionP̃(q) ~as opposed to the distribution o
the targetq values! is peaked atq50.5, and its spatial cor-

relation functionC̃k( j ) reveals slight nearest-neighbor corr
lations fork50 and anticorrelations atj 50 for k.0, once
again matching elastic-regime behavior.

The probability distribution of node forces,P(F), is
shown in Fig. 8~a! for different values of iteration numbern.
As the number of iterations is increased, theP(F) develops
an exponential tail at large forces. Figure 8~b! shows the
probability distribution of theq’s, P̃(q), versus the numbe
of iterations.P̃(q) approaches the target form of a unifor
distribution after roughly ten iterations.

Figure 9~a! shows our results for nearest-neighbor i
plane and vertical force-force correlation function valu
C0(1) andC2(0) as the number of iterationsn is increased.
Figure 9~b! shows the corresponding force-fractionq-q cor-
relationsC̃0(1) andC̃2(0). While only about ten iterations
are necessary before the nearest-neighbor spatial correla
betweenq values go to zero, in-plane force-force correlatio
are still present after 100 iterations, although much redu
in magnitude from the initial elastic~iteration n50) value
and approaching the expected zero-correlation value asy
totically.

The quantitydSN that we use to characterize the cros
over between elastic andq-model behavior is defined in Sec
II. As Fig. 10 demonstrates, we observedSN to decrease as
the number of iterationsn is increased according to a powe
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FIG. 9. ~a! Nearest-neighbor in-plane and vertical force-force correlation valuesC0(1) andC2(0) at various stages of iteration for a
ensemble of 16-column scalar networks. The observed anticorrelation in nearest-neighbor forces decreases in magnitude as the
iterations increases, and appears to approach asymptotically the expected zero-correlation value. The vertical correlation in
magnitude with increasing iterations, indicating a stronger preference for the formation of force vertical channels.~b! Nearest-neighbor

in-plane and verticalq-q correlation valuesC̃0(1) andC̃2(0). Thespatial correlations for the force fractionq decrease rapidly in magnitud
as their values approach the uncorrelated targetq distribution.
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law. A fit that assumes the dependence is of the formdSN
}na yields a521.6860.02.

B. Results of molecular dynamics simulations

Here we discuss the results of our MD simulations. Fig
11 showsP(F), the probability distribution of vertical force
F5FW • ŷ, for MD systems under various applied pressuresP.
As with the scalar model,F has been normalized so that th
average vertical forceF̄51 for each system configuration
The progression ofP(F) as pressure is increased is ve
similar both qualitatively and quantitatively to the crossov
from granular to elastic behavior in the scalar model latt
systems. We calculate the force-force correlation val
C0( j ), shown in Fig. 11~b!, by defining disks to be in plane
with a tolerance of60.10aD and j in units of average disk

FIG. 10. Deviation from constant straindSN for each layer in a
scalar network system defined by Eq.~4!. The solid line is a power
law fit of form dSN}n2a, with a521.6860.02. Increasing itera-
tions confirm the approach to the constant strain limit, which
equivalent to theq model.
e
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diameter 2aD . In contrast with the scalar model behavio
the MD systems exhibit a significant nearest-neighbor a
correlation for all applied external pressures. These res
for P(F) andC0( j ) are independent of whether the samp
are compressed in stages or directly at a fixed pressureP.

We define theq value of a disk as the fraction of tota
vertical force received from its topward neighbors that
transferred to its bottom leftward neighbors. The probabi
distribution ofq values,P̃(q), is shown in Fig. 12. We also
calculate theq-q correlation valuesC̃0( j ) and C̃k(0), al-
though the large errors prevent the extraction of quantita
trends. Narrowing the statistical errors would be compu
tionally prohibitive.

The number of contacts increases significantly with
pressure, as shown in Fig. 13. As the magnitude of the ty
cal overlap increases, additional contacts are formed.
number of contacts at low pressures is below the theor
cally predicted average ofZ52d @9#, whered is the dimen-
sion of the system, because the polydispersity in radii and
lack of gravity allow for the existence of ‘‘rattlers’’ which do
not support any of the external load.

Our results for the Hertzian contact systems are indis
guishable from those of the linear springs throughout mos
the range of pressures explored. At higher pressuresP(P
>35P0), the added stiffness of the Hertzian contacts lea
to the slower narrowing ofP(F).

V. COMPARISON OF RESULTS OF MD SIMULATIONS
AND OF SCALAR ELASTIC NETWORKS

Here we compare the behavior observed in the MD sim
lations and in the scalar elastic networks. Because diffe
schemes are used to induce the granular-elastic crossov
the two systems~iterations in the scalar networks and exte
nal pressure for MD!, we need to establish a common me
sure to quantify a system’s position within the crossover
gion. As the evolution of the probability distribution o
vertical forces,P(F), is qualitatively and quantitatively simi

s
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FIG. 11. ~a! Progression of vertical force probability distributionP(F) between elastic and granular regimes in MD-generated packi
At a high applied pressureP, P(F) fits a Gaussian functional form, as shown by the gray dashed line, similar to the elastic behavior
scalar network. At low pressure,P(F) has widened and displays a roughly exponential tail. For comparison,P(F) for theq model is shown
by the black dashed line. The apparent transition to the granular regime appears to occur by roughlyP/P051. ~b! In-plane two-point force
correlation function valueC0( j ) for various applied pressures. We define disks to be in-plane within a tolerance of60.10aD , with spacings
j given in units of the average disk diameter 2aD . Unlike the scalar networks, in the MD we see a consistent nearest-neighbor anticorre
for all pressures.
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lar in the network model and in the MD simulations, we u
matches in its form to establish a relationship between ite
tion numbern and applied pressureP. Figure 14~a! shows
matches in form between linear-force-law MD packings a
iterated scalar network systems forP/P05100 and iteration
n50, P/P0510 and n510, and P/P051 and n5100.
From these matchings, we map the iteration numbern in the
scalar networks to the equivalent applied pressurePeq(n) in
the MD using the simple scaling@35#

Peq~n!

P0
5

100

n
. ~18!

FIG. 12. Progression of the vertical force fractionq distribution

P̃(q) between elastic and granular regimes in MD-generated p
ings. Eachq is calculated as the fraction of the vertical force co
ponent that is transferred to the bottom left neighbors of a disk
high pressuresP, we see a peaked form centered atq50.5. For

decreasing pressure,P̃(q) flattens out and is roughly uniform. Th
increasing magnitude of the leftward bin with decreasing press
P is due to increasing probability of isolated ‘‘rattlers’’ and dis
with no bottom left neighbors.
a-

d

We perform a check on this proposed scaling by cons
ering the analogous quantities of deviation from const
strain in scalar systemsdSN , given by Eq.~4!, and deviation
from the infinitely hard, zero-deformation limit in MD sys
tems calculated by

dSMD[
1

NC
(
( i , j )

udr i , j u2

~ai1aj !
2

, ~19!

whereNC is the total number of contacts and the sum is o
pairs of disksi and j in contact. We matchdS values for
P/P0510 andn510 by scaling the square deviation for th
scalar network systems by a constant factor of 0.030. Fig

k-

t

re

FIG. 13. Number of contactsNC and coordination numberZ for
MD-generated packings of 1024 disks vs externally applied p
sure P. The number of contacts fits roughly to a formNC5N0

1a(P/P0)b, whereN0 is the number of contacts in the zero-forc
limit. At low pressures,N0 is slightly less than two contacts pe
particle because of the presence of ‘‘rattlers’’ in the zero-grav
system.
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FIG. 14. ~a! Matching vertical force probability distributionsP(F) for iterated scalar spring networks and MD packings of particles w
a linear force law. We observe good agreement in the form ofP(F) between iterationsn50 andP/P05100,n510 andP/P0510, and
n5100 andP/P051. ~b! Normalized strain deviationdSN anddSMD as a function of actual or equivalent applied pressure. The matc
of P(F) is used to generate a mapping between iteration values of the scalar networks and the pressures imposed on the MD s
simple scaling approach yieldsPeq/P05100/n. Additionally, dSN for the scalar networks is scaled by a factor of 0.030 to achi
equivalence atn510(P/P0510).
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14~b! shows that this scaling yields reasonable agreem
betweendSN anddSMD over the crossover region.

In contrast to the agreement in the trends ofP(F), quali-
tative differences exist between the scalar network mo
and the MD simulations in spatial correlation function valu
Cj (k). Figure 15~a! shows the nearest-neighbor in-plane a
vertical force-force correlation values,C0(1) andC2(0), for
the crossover between elastic and granular regimes. W
the MD systems exhibit a significant in-plane neare
neighbor anticorrelation throughout the crossover, a decre
in its magnitude is seen in the scalar networks as the sys
nt

el
s

ile
-
se
ms

change from elastic to granular. MD systems do not exh
strong vertical correlations, in contrast with the scalar n
works whoseC2(0) value increases significantly as th
granular limit is approached.

The large statistical uncertainties in ourq-q correlation
functions for MD systems restrict us to making only qualit
tive behavior descriptions. The trend for in-plane neare
neighbor correlation behaviorC̃0(1) in both systems is simi-
lar. However, qualitative differences exist for vertic
correlation valueC̃2(0): the MD systems display consisten
anticorrelation behavior, while the scalar networks disp
ems
een in the
t in

s. How-
hout the
havior as
FIG. 15. ~a! Comparison of nearest-neighbor in-plane and vertical force-force correlation function valuesC0(1) andC2(0) between MD
and scalar spring networks at various pressuresP and iterationsn. We see qualitative and quantitative differences in behavior. MD syst
exhibit a significant in-plane nearest-neighbor anticorrelation throughout the crossover region. This contrasts with the decrease s
scalar networks as it approaches the granular limit~large iterationn). Strong vertical correlations develop in the scalar networks but no

the MD systems.~b! Nearest-neighbor in-plane and verticalq-q correlation function valuesC̃0(1) andC̃2(0). Thesizeable errors in the MD
values allows for only qualitative comparisons. Both systems exhibit similar trends for in-plane nearest-neighbor correlation value
ever, qualitative differences exist for the behavior of vertical correlations: the MD systems display a constant anticorrelation throug
crossover region, while the scalar networks exhibit an anti-correlation in the elastic regime which decays rapidly to uncorrelated be
the granular limit is approached.
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anticorrelation behavior in the elastic regime which dec
rapidly to uncorrelated behavior as the granular limit is a
proached.

Our work indicates that experiments on granular media
high pressures should yield a force histogram that diff
qualitatively from that observed at lower pressures. Exp
ments by Howellet al. @36#, as well as experiments an
simulations by Makseet al. @37#, are in qualitative agree
ment with this result. Howellet al. @36# controlled the tran-
sition between granular and elastic behavior of slow
sheared systems in a 2D Couette geometry by varying
packing fractiong within a range 0.77<g<0.81. The aver-
age force/length on a particle increases withg. For lower
values ofg, the distribution of large stresses is asympto
cally exponential, while the distribution of stresses has
Gaussian form at higher packing fractionsg. Makseet al.
@37# applied increasing pressure to three-dimensional pa
ings of spherical glass beads to achieve the crossover
tween granular and elastic behavior, and also performed
simulations on 3D systems. Makseet al. observed a cross
over in the force histogramP(F) in a pressure range that
consistent with our 2D MD results.

An interesting question is whether the persistent in-pla
nearest-neighbor anticorrelation in the forces that is obse
in the MD simulations is present in experimental system
Mueth et al. @15# did not find evidence of correlations be
tween different sites in the same horizontal layer; a
nearest-neighbor anticorrelation in the experiment is sma
than the experimental resolution. However, they measure
different correlation function,K1(r ), defined as

K1~r !5

(
i 51

NB

(
j 5 i 11

NB

d~r i j 2r ! f i f j

(
i 51

NB

(
j 5 i 11

NB

d~r i j 2r !

, ~20!

where the sums are over theNB particles in the bottom layer
f i is the force at positionr i in the bottom layer, andr i j

5urW i2rW j u. Calculation ofK1(r ) from the numerical data fo
our MD simulations yields values of the correlation functi
that are smaller than the error bars in the experiment. C
parison with Ref.@15# is necessarily qualitative since th
experiments measure the properties at the surface of a
packing while our MD results are calculated using numeri
data from the bulk of a 2D system.

VI. DISCUSSION

We have investigated the crossover between elastic
granular stress transmission in both a 2D scalar lattice m
and in molecular dynamics simulations of slightly polyd
perse disks. The evolution ofP(F), the probability distribu-
tion of stresses, is very similar in the lattice model and
MD. However, the behavior of the spatial correlation fun
tions for stress,Ck( j ), differs qualitatively.

Our investigations of the scalar model have several im
cations for the development of granular media models. F
we have shown that implementing a local constraint can c
vert an elastic network to aq model. This constraint has th
natural physical interpretation that the strain in the syst
s
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must be uniform; it is plausible that rearrangements wo
prevent strain gradients from forming. Second, implement
this constraint to increasing accuracy causes the force h
gramP(F) to evolve in a manner similar to that observed
the MD simulation as the pressure is decreased.P(F) has a
tail consistent with exponential decay at large forces in
granular limit, whileP(F) for the highly compressed system
is much narrower and decays more quickly at large forc
We note that implementing a nontensile force constra
alone, as in Ref.@25#, yields Gaussian decay inP(F) at large
forces even at the lowest pressures, in qualitative disag
ment with the MD results of ourselves and others@16,18,37#.

While this success in describing the evolution of the for
histogram and the scalar model’s simplicity in both formu
tion and implementation make it an attractive platform f
the study of media models, the discrepancy in the beha
of the correlation function behavior with the MD simulatio
results needs to be addressed. The scalar model assume
plicitly that in the granular regime the stress redistributi
fractionsq at different sites are uncorrelated. The extent
which this condition is valid needs to be examined in mo
detail. Spatial correlations of theq’s can strongly affect the
probability distribution of stressP(F) @28,38# but the degree
to which these correlations exist in real packings has
been settled. A possible source of spatial correlations in
q’s is the constraint that nontensile vector forces must
balanced. However, vector generalization of theq-model
systems proposed to date have required arbitrary constr
to be imposed to limit the scale of stress components perp
dicular to the direction of applied force@12#. Clarification of
the roles of vector force balance and contact formation is
to identifying and characterizing the processes govern
stress transmission beyond those that have been impleme
in the scalar model.

In conclusion, we have shown that similarities exist in t
evolution of the probability distribution of stressesP(F) in
the crossover between elastic and granular regimes for a
lar lattice model, and MD simulations of slightly polydis
perse disks. However, the systems exhibit qualitative diff
ences in the two-point force correlation functionCk( j ).
Further investigation of the systematic influences leading
the spatial correlations between forces is necessary for
development of a successful model of stress transmissio
granular media.
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APPENDIX: FINITE-SIZE CORRECTION TO
CORRELATION FUNCTION CALCULATION

In the q model in the limit of infinite size, forces at dif
ferent sites in the same layer are completely uncorrelated
a system of finite transverse extent, the requirements tha
total force through every layer is identical and there are
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tensile forces lead to a finite-size correction to the correla
function. This appendix discusses this correction.

We characterize the correlations between force fluct
tions on sites in the same row using the correlation funct

C0~ j !5
1

Ly
(
l 51

Ly S (
m51

Lx

dFl ,mdFl ,m1 j

(
m51

Lx

dFl ,m
2 D , ~A1!

wheredFl ,m5Fl ,m2F̄ is the deviation of the force at a sit
in row l and columnm from the average forceF̄. For a q
model with a uniform distribution ofq’s, in a system of
infinite transverse extent, this correlation function is@11#

C0~ j !5H 1, j 50

0, j Þ0
. ~A2!

This result follows from the fact thatP(Fa ,Fb), the prob-
ability that the force through nodea is Fa and the force
through nodeb at the same horizontal level isFb , is factor-
izable:

P~Fa ,Fb!5P~Fa!P~Fb!.

As a result, foraÞb,

^dFadFb&5 lim
Lx ,Ly→`

1

LyLx
(
l 51

Ly

(
m51

Lx

dFl ,mdFl ,m1 j

5E
0

`E
0

`

dFadFbdFadFbP~Fa ,Fb!

5E
0

`E
0

`

dFadFbdFadFbP~Fa!P~Fb!

5S E
0

`

dFadFaP~Fa! D S E
0

`

dFbdFbP~Fb! D
5F E

0

`

dFdF P~F !G2

5F E
0

`

dF~F2F̄ !P~F !G2

5@ F̄2F̄#2
n

-
n

50. ~A3!

On a lattice of finite width (Lx sites!, the multipoint force
probability distribution function must be consistent with th
facts that first, the total force down every layer is fixed, a
second, no force is negative. This implies the following.

~i! The maximum force on any node in any layer cann
be larger thanFmax5LxF̄.

~ii ! The forceFa at a nodea contributes to the total force
along a layer, and hence affects the sum of the forces thro
the remaining sites in the layer. DefiningF̃ as the average
force through all the sites in the layer other than sitea, we
have

F̃5
LxF̄2Fa

Lx21
5F̄2

Fa2F̄

Lx21
5F̄2

dFa

Lx21
. ~A4!

Assuming that the only correlations present in the fin
system are those required to satisfy these conditions and
the probability distribution of individual forces is the sam
for all sites in the row~satisfied by systems with periodi
boundary conditions!, the joint probability distribution in the
system with finiteLx can again be written

P~Fa ,Fb!5
1

F̄F̃
PS Fa

F̄
D P̃S Fb

F̃
D , ~A5!

but now the distributions are subject to the constraints

E
0

Lx
P~v!dv51, E

0

Lx
vP~v!dv51 ~A6a!

E
0

Lx21

P̃~n!dn51, E
0

Lx21

n P̃~n!dn51. ~A6b!

In the limit of Lx→`, we expect corrections toP(F) to be
of order 1/Lx as the fluctuations in the forces at the sites
of order unity. As we will see, with the assumptions that w
have made, the finite-size correction to the correlation fu
tion does not depend on the form of the probability distrib
tion P. Taking the new constraints into account, foraÞb we
have
^dFadFb&5E
0

Lx
dFaE

0

Lx2Fa
dFbdFadFbP~Fa ,Fb! ~A7!

5E
0

Lx
dFaE

0

Lx2Fa
dFb~Fa2F̄ !~Fb2F̄ !X 1

F̄F̃
PS Fa

F̄
D P̃S Fb

F̃
D C

5F̄2E
0

Lx
dS Fa

F̄
D S Fa

F̄
21D PS Fa

F̄
D F̃

F̄
E

0

Lx2Fa
dS Fb

F̃
D S Fb

F̃
2

F̄

F̃
D P̃S Fb

F̃
D
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5F̄2E
0

Lx
dS Fa

F̄
D S Fa

F̄
21D PS Fa

F̄
D F̃

F̄
E

0

Lx21

dnS n2
F̄

F̃
D P̃~n!

5F̄2E
0

Lx
dS Fa

F̄
D S Fa

F̄
21D PS Fa

F̄
D F F̃

F̄
E

0

Lx21

dnn P̃~n!2E
0

Lx21

dn P̃~n!G
5F̄2E

0

Lx
dS Fa

F̄
D S Fa

F̄
21D PS Fa

F̄
D F X12

1

Lx21 S Fa

F̄
D CE

0

Lx21

dnn P̃~n!2E
0

Lx21

dn P̃~n!G
5F̄2E

0

Lx
dv~v21!P~v!F S 12

v21

Lx21D E
0

Lx21

dnn P̃~n!2E
0

Lx21

dn P̃~n!G
5F̄2E

0

Lx
dv~v21!P~v!F E

0

Lx21

dn~n21!P̃~n!2
v21

Lx21E0

Lx21

dnn P̃~n!G
5F̄2F E

0

Lx
dv~v21!P~v!E

0

Lx21

dn~n21!P̃~n!2
1

Lx21E0

Lx
dv~v21!2P~v!E

0

Lx21

dnn P̃~n!G
52

F̄2

Lx21E0

Lx
dv~v21!2P~v!.

As the correlation function is normalized with respect to the average fluctuation size,

C0~ j Þ0!5 lim
Ly→`

1

Ly
(
l 51

Ly S (
m51

Lx

dFl ,mdFl ,m1 j

(
m51

Lx

dFl ,m
2 D 5

^dFadFb&aÞb

^dFa
2&

5

2
F̄2

Lx21E0

Lx
dv~v21!2P~v!

F̄2E
0

Lx
dv~v21!2P~v!

52~Lx21!21, ~A8!

which is independent of the form of theP(F). As Lx→`,C0( j Þ0)→0, as expected.
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