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Scalar model of inhomogeneous elastic and granular media
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We investigate theoretically how the stress propagation characteristics of granular materials evolve as they
are subjected to increasing pressures, comparing the results of a two-dimensional scalar lattice model to those
of a molecular dynamics simulation of slightly polydisperse disks. We characterize the statistical properties of
the forces using the force histogram and a two-point spatial correlation function of the forces. For the lattice
model, in the granular limit the force histogram has an exponential tail at large forces, while in the elastic
regime the force histogram is much narrower, and has a form that depends on the realization of disorder in the
model. The behavior of the force histogram in the molecular dynamics simulations as the pressure is increased
is very similar to that displayed by the lattice model. In contrast, the spatial correlations evolve qualitatively
differently in the lattice model and in the molecular dynamics simulations. For the lattice model, in the granular
limit there are no in-plane stress-stress correlations, whereas in the molecular dynamics simulation significant
in-plane correlations persist to the lowest pressures studied.

PACS numbes): 45.70.Cc, 46.65:g

I. INTRODUCTION lar dynamics simulations. Models of this type hold promise
as a means to obtaining insight into the physics underlying
Stress transmission in dry granular media is unusual bethe force propagation in granular materials. Our model for
cause in these materials no simple relation exists betweethe granular regime is the two-dimensional scalamodel
stress and straifil—5]. Physical ingredients that give rise to [10,11]. Though theg model has deficiencigd 2], it is at-
this are that there are no tensile forces, that the particle deractive because of its simplicity, and its prediction of an
formations are very small, and that the particles can rearexponential tail in the probability distribution of stress within
range[6]. Over the last several years evidence has accumwa packing agrees with experimerftt3—15 and with simu-
lated that force propagation in dry granular media could bdations[16—21. Our model for the elastic regime is a net-
fundamentally different than in elastic solid8-5, 7—9.  work of springs with a regular topology, with disorder intro-
Equations that have been proposed to describe stressesduoced via randomly chosen spring constaf#&—25. To
lightly loaded granular media have the property that specifimodel the crossover between the two regimes, we exploit our
cation of boundary conditions at the top surface of the sysebservation that thg model can be written as a scalar elastic
tem is sufficient to determine the stresses throughouhetwork subject to certain constraints. Enforcing these con-
[4,5,7,8-11], in marked contrast to the elliptic equations of straints to an increasing degree, which causes the force
elasticity theory. propagation behavior to evolve from that of an elastic system
However, applying a large enough uniform pressure to do that of theq model, models the crossover between elastic
granular material will cause it to exhibit an elastic linearand granular behavior by a particulate assemblage subjected
response to a small additional stress. This is because uniforto decreasing pressure.
pressure both inhibits rearrangeme(iiecause it suppresses  We test the lattice model by comparing the results from
Reynolds dilatancyand compresses the contacts, so that thehe model to those of our MD simulations of two-
nontensile constraint on the interparticle forces becomes irdimensional systems of slightly polydisperse disks, focusing
relevant. Thus, if stress propagation in lightly loaded granuprimarily on the probability distribution of stresses and on
lar media is indeed substantially different than in elastic methe two-point stress-stress correlation functions. The results
dia, then subjecting the material to high pressures willof this investigation are mixed. The crossover in the force
fundamentally change the stress propagation characteristichistogram between the elastic network and thenodel is
This paper theoretically investigates the stress propagastrikingly similar to the crossover observed in the molecular
tion in granular materials as they are subjected to increasindynamics simulations as the pressure on the system is de-
pressures. The goals of this work are to understand the physireased. However, the lattice model and the molecular dy-
cal mechanisms governing the evolution between granulamamics simulation exhibit qualitatively different trends in the
and elastic behavior, and to make specific experimental présehavior of the two-point correlation functions of the stress.
dictions for the behavior of granular media under increasing The paper is organized as follows: Section Il defines the
loads. scalar networks that we investigate. Section Il details the
We study a two-dimensional model system and compar@rocess of generation, solution, and analysis of these net-
the results to molecular dynami@§ID) simulations of two-  works, and discusses the generation of the molecular dynam-
dimensional systems of slightly polydisperse disks. Numeriics simulations of slightly polydisperse disks. Section IV re-
cal studies of statistical models of granular media, whergorts the results of the force distributions and spatial
geometrical complexity is modeled in terms of uncorrelatedcorrelation functions for both the scalar lattice model and the
random variables, are much faster and simpler than molecMD simulations. Section V compares the results of the scalar
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vertical line as the other nodes in colurnim rows with odd
(even indices.

Lety; ; be the position of the node in roinand column
measured relative to its location in the absence of a load, and
let k!,j and ki"j be the spring constants of the springs ema-
nating downward from the node at ravand columnj. Every
spring obeys Hooke's law, so thatj and fi"j, the forces
exerted on nodei(j) by the left and right springs below the
node, ard(!,j(yi,j_yHl,j—l) andk; ;(y; j—Yi+1,;) for oddi
[k:,j(Yi,j_yi+1,j) and ki ;(yi,j—Yi+1+1) for eveni]. The
system is then compressed by setting=(L,—1)AY and
yLy'J:O for all j, where rows 1 and., are the top and

bottom rows, respectively, anslY is the average strain. We
defineF; ; to be the total vertical force incident from above
on node {,j), so thatFi,J:f{,ld-,lJrf!,Lj . The forces and
displacements are determined by balancing the forces at ev-
ery nodef; ;= f}yj+f{’j , and requiring that eacy ; be well
defined. This latter condition can be written &s —[d]Y;
hereS is the strain andY is the displacement fiell27].

In our spring networks, each spring constant has a value

FIG. 1. Elastic network considered in this paper. Each node isg|ected independently at random from various probability
connected to two neighbors in the row above and to two neighborgjistributions that are described below. We obtain the forces

in the row below, with movement confined to the vertical direction. 5nd strains along each link of each network using the method
A node (,j) and its surrounding nodes have been labeled. Theyutlined in Ref.[27].

system is compressed by holding the top and bottom rows each at 15 gcajar elastic model is equivalent to a resistor net-

fixed positions. Disorder in the stress distribution is introduced bywork [22,23,25. Forces and strains in the elastic system cor-
variation of individual spring constanks In the elastic regime thle PR

L ) r n rrents and vol r ively, in the resistor
values are chosen at random, while in the granular regimé&’the espond to currents and voltages, respectively, in the resisto

are additionally constrained so that the strain in each row is Conpetwork. The _requw_ement that_the ve1rt|cal forces at e‘?‘Ch
stant. node ba!ance is equivalent to Kirchhoff's current law, whlle
the requirement that the position of each node is well defined

lattice model, the MD simulations, and relevant experiments'S €duivalent to Kirchhoff's voltage law.

Section VI summarizes and interprets our results. The Ap- . .
pendix calculates a finite-size correction to the in-plane Comparison between the elastic model and thg model

stress-stress spatial correlation function for ¢heodel that The forceF; . incident from above on nodé,() is trans-
is relevant to the interpretation of our numerical results.  itted to the éites below in the two piecé#- and '
d i

Because of force balance, one can always write

f:,qui,jFi,jr fli=(1—ai)Fi;. 1

Il. SCALAR ELASTIC NETWORKS AND THE Q MODEL

This section discusses the relationship between ghe
model and the elastic network studied in thi; paper. Both, 4 g model, g; s are random variables that are chosen
r_nodels are scalar an(_:i are deflned ona two—cﬁmensmnal I_afﬁdependently at every site. In an elastic network, Eq.
tice. A scalar model is appropriate for a spring network if i) pojgs, butq;; are determined by the configuration of
either the the network is very highly stre_tchm,ZB,ZQ, OF  random spring constants together with the requirement that
e : Pl Mhe displacement field be single valued. For spring constants
directional[25]. We consider the second snua}tlon and denote[hat are chosen independently, the force along any branch
the direction along which the motion occursyaswith posi-  will depend on the values of the spring constants throughout
tive y pointing downward. the system. Important consequences of this nonlocality in-

Consider a network of nodes connected by springs on gjude the presence of spatial correlations betweergthis
diamond lattice as shown in Fig. 1, where the motion ofand a nontrivial relation between the distribution of spring
every node is constrained to be along the vertical diregtion constants and the distribution of tlgés, including possibly
Each spring has the same unstretched length, so that in tllkee presence afi’'s that are negative, indicating the appear-
limit of zero load the system forms a regular lattice. Theance of tensile forces in the network.
springs connecting the nodes have spring constants that are A key observation underlying our work is that thge
chosen independently from a fixed probability distribution.model is equivalent to an elastic network subject to the con-
Periodic boundary conditions are imposed in the horizontastraint that the strain on every spring in each row is identical.
direction, and the locations of the nodes at the top and boffhe strain need not be constant from one row to the next, but
tom boundaries are fixed so that the vertical displacement df is simplest to consider the case in which it is. Let the
all the nodes in these rows relative to the unloaded configuamount of strain belY. Given the total force incident on
ration are identical. We index the nodes so that a node imode (,j) from aboveF; ;, if one chooses the spring con-
columnj in a rowi with odd (even i lies along the same stants to be
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then the force exerted down the left link emanating from
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I1l. METHODS
A. Scalar lattice model

We consider diamond-shaped lattices with springs on
each link, as shown in Fig. 1. The positions of the top and

. . | _
node (,j) is ki jAY=q;F;, and the force exerted down poiiom node layers are fixed, and periodic boundary condi-

the right link from node ij) is k{,jAY=(1—qu)Fi‘j . This

force redistribution rule is exactly that of tliemodel. Given

tions are imposed in the transverse direction. The forces
along all the links depend on the choice of spring constants,

the set ofq; ; values and the forces at each node in the R, ;1, and are calculated using the node-potential method
row of the system, we can create an equivalent spring negescribed in Ref[27]. The overall strain for each network is

work in a layer-by-layer manner.

scaled so that the average vertical force through each node is

We do not implement explicitly a no-tensile force con- normalized to unity,

straint in our networks, in contrast to the work of Rg{4]

and[25]. However, in theg-model limit, there are no tensile
forces. Our molecular dynamics simulations of lightly loaded
material yield force distributions much closer to that of the

. 1 Ly Ly
= Fo=1, 6
Lxl—y izl jgl b ( )

model than to those of the nontensile elastic networks of Ref.

[25].

To study the crossover between elastic apthodel be-
havior, we iteratively generate a sequence of networks th
interpolate between the elastic agemodel limits. The pro-
cedure adjusts the spring constants to make the strain in t
system more uniform while keeping the ratio of spring con-

stants emanating from each node constant. At iteratjaghe
spring constantk!’j(n) and k{,j(n) are set to

| Fi’j(n_l)

ki‘j(n)qui,j, (33
; Fij(n—1)
ki,j(n):T(l_qi,j)a (3b)

whereF; j(n—1) is the force through node,() at iteration

where the sum is over the nodes in the network.
Networks of height.,=500 are used, with analysis per-

Jprmed on separate groups of layers to distinguish between

edge and bulk effects. The widtlhs=16 and 128 are pow-

s of 2 in order to take advantage of fast Fourier transform

FT) techniques in the calculation of spatial correlation
function values described below. The number of realizations
averaged over varies from 10 to 50, depending on lattice size
and number of iterations.

For the elastic regime, we use four different distributions
of spring constants: uniform distribution & for k!
€(0,1), Gaussian distribution & ! with the configuration
averagek =1 and standard deviatiom,-1=0.5, uniform
distribution ofk with ke (0,1), and Gaussian distribution of
k with k=1 and o=0.5. We construct networks with,
=16 and 128 with 50 and 25 realizations, respectively.

For theg-model regime, a uniform distribution @f with

n—1. All g; ;s are kept fixed, and the iteration procedure isqe (0,1) is used. We implement the iterative scheme with

started withF; ;(0)=1.

networks of sizeL,=16 and 128, with 50 and 10 realiza-

To characterize the crossover between elastic andons, respectively, for 100 iterations. The relatively small
g-model behavior as the iteration proceeds, we need to quanvidth, L,= 16, allows for the diffusive decay of correlations
tify the degree to which the constant-strain constraint is viothat can be introduced at the top and bottom boundaries
lated. We use as our measure of the spatial variation in th@ithin the interior regions oL, =500 systems, as will be

strain the dimensionless quantity

5SSy

1 Lyfl

T

—-1) i=1 j

LX
(8Y} ;= 8Y)?+(8Y] ;= 8Y)?)
=1

SY?
(4)

Whereb‘Y:Yi=Yi1j—Yi+1’j,l andﬁYir'J-:Yi’j—YHl,j fOI’ Odd
i (5Y=,j:Yi,j_Yi+1,j and@Yiryj:Yi'j—YHlYHl fOI’ eVeni),
and

_ 1 -1

Ly
Y ——
L(L,—1) 2

L

X1
2 2 (Y +8Y[)=AY. (5
i=1 j=1

HereL, andL, are the number of rows and columns, respec-
tively. In the elastic limitéSy~0.2, and as discussed above,

68y is zero for theg model.

discussed below in Sec. IV.

The local stress redistribution in a real granular material
depends on microscopic details such as particle shape, fric-
tion characteristics, and preparation history. Instead of at-
tempting to model the local force redistribution rules micro-
scopically, our statistical models treat them as random
variables chosen from different probability distributions.
Since these probability distributions are not knosvpriori,
we wish to identify and study properties that are not sensitive
to the choice of the probability distribution governing the
local force redistribution in the model. We focus &4F),

the probability distribution of stresses at the node), the
probability distribution of the redistribution fractiortg and
the spatial correlation functions of the force fluctuations
about the mean valugg8§],

LX
Lok | 2 OF| mOF 1 iom+
Cu(i) = VE m=1
k(J)_Ly_k = i , ’
oF
m=1 ’
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Lx Kinetic friction is incorporated into the disk interactions
L,k E O, mOi 1 k,m+ | although static friction is not. The introduction of frictional
Buli)= 1 D m=1 7 forces causes the disks to rotate; however, the frictional force
k Ly—k =1 Cx ’ is zero at mechanical equilibrium. The kinetic friction force
S 592 . s
o~ dim f; ; for contact between disksand] is
fii=nFij, (11

where 6F; ;=F; ;—F and &q; ;=q; j—q;F is the average
force, andq is the average value. The indice$ andmin  whereu is the coefficient of kinetic friction, and is directed
Eq. (7) label layers and columns, respectively, whlandj  opposite to the contact point velocitf® . For diski, this
are the spatial separation in layers and columns. These C%’elocity 5P is related to disk velocities: ando: . the angu-
relation functions are normalized so th@,(0)=1 and b ! I

~ " o lar velocities w; and w;, and directional vectomr = (r;
Co(0)=1. Positive valuegcorrelation indicate a tendency s - !

for nodes separated lyrows vertically and columns hori- —r/ri—rj| by
zontally to be either both above or both below the mean, ~ep_ > s ala - -

while negative valueanticorrelation indicates opposite be- vi=vi;~ (Ui Nr+(aei+aje)Xr, (12)
haviors of one above and one below the mean. - - -

wherev; ;=vi—vj.

Damping during contact between diskandj is used as
an additional means of dissipating kinetic energy. It is gen-
Here we discuss our MD simulations used to generaterated by applying to diska force 7 and torquel’p given
two-dimensional2D) packings of disks. Varying the ratio of by
external load pressure to particle stiffness induces crossover

B. Molecular dynamics simulations

between granular and elastic behavior. We calculate the Fo=—Nyand » (133
probability distributions and corresponding spatial correla-
tion function values for forces and redistribution fractians I'p=—Nangoi (13b)

that are analogous to those in the scalar model. Our simula-

tions employ a method similar to that used by the authors oivherev; is the translational velocity of discrelative to the

Refs.[29-31 for sheared foams, incorporating kinetic fric- interaction center of mass for the two diskandj that are in

tion, contact damping, and particle rotation, and using twacontact, andw| is its angular velocity relative to the total

different repulsive interparticle force lawknear and Hert-  angular momentum of the disk paNyansand\ zngare damp-

zian). ing constants. This process conserves both translational and

] ) angular momentum. Energy is directly removed from the
1. MD interaction rules system as opposed to being converted between translational
The disks in our simulation are all of identical masg ~ and rotational motion.

=1, and interact via purely repulsive normal contact forces The bottom and top walls have masgy and are con-

and kinetic friction. The interaction force between two disksstrained to move only vertically. An inward force of magni-

whose centers are at positionandr; with radii a; anda; is tude F,, is applied to each wall in order to compress the

nonzero only if their separatiodr; (<0, where s_ystgm. Damping of the wall mption suppresses volume_os.—
. cillations, and serves as the primary means of energy dissi-

5ri,j:|Fi_Fj|_(ai+aj)- ®) pation. The damping forc&y,p on a wall is
The normal contact forcé; ; is calculated from the overlap Fwo=~Awow, (149
|61 5. We examine two force laws. The first is a linear force yhere p,, is the velocity of the wall andvy, is the wall
law based on a springlike restoring force that yields damping constant.

Fii=Kilorijl, 9) 2. MD implementation
with K; ;= (L/K; + 1/KJ-)*1, whereK 4 is the spring constant Ensembles of systems Nfz 1024 dis.ks of average radius
for disk d. The second is a nonlinear force law based orAp are generated by starting with triangular array 0%
Hertzian contacts between sphefag], rows andy/N disks per row placed in a horizontally periodic
system with both height and width=2.273,+/N. For the
data shown here, disks are placed in the system at positions
(L(ny+0.05)A/N,L(n,+0.5)/\/N) for odd n, and (L(n,
+0.55)/\/N,L(ny+0.5)/\/ﬁ) for evenny, with indicesn,
whereD=2((1- 0?)/E), with o and E being the material and ny running from 0 toy/N—1. In practice, disks with
properties Poisson’s ratio and Young’'s modulus, respecGaussian distributed polydispersity f=0.1ap placed on
tively. For both force laws, the forces are directed so as tdhis triangular array do not overlap. The results obtained are
separate the overlapping disks. To calculate forces generatedt sensitive to initial disk placement. The system is then
by interactions with walls, we assume the walls to be diskscompressed by the application of an inward force on the top
of infinite radius. and bottom walls. All disks have the same spring constant

-1/2

]:i[:]C]:D*l |5rij|3/21 (10)

1
4
a; aj
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Kq=K=1. The coefficient describing wall damping is set to IV. RESULTS
Aw/my=1. Damping coefficients for translational and an-
gular motion for disk contacts are set Xg,./Mp=1 and _
Nang/l p=4.1, wherel,=mpa2 is the moment of inertia Here we present our results for the scalar lattice models.
for a disk with radiusap . The coefficient of kinetic friction We study how the probability distribution of total vertical
is set tou=0.2 for both disk-disk and disk-wall contacts. force F incident on a node from above(F) and the two-
Comparisons with samples produced without disk-contacPoint force correlation functiorCy(j) characterize the be-
damping or kinetic friction revealed no measurable differ-havior in scalar elastic lattice networks in which the
ences in force probability distributions or in the two-point constant-strain constraint is enforced to varying degrees. In
force correlation function. Incorporating additional energy-the g model bothP(F) and the in-plane force-force correla-
dissipation mechanisms allows systems to reach mechanichpn function Co(j) exhibit robust behaviors for generic
equilibrium more rapidly. The end time for each Compres_choices of probability distributions @f's. We investigate the
sion stage is chosen so that the average residual kinetic efegree to which these quantities depend on the choice of
ergy for each disk is equivalent to translational movement ofPring constant distributions in the elastic networks, and dis-
approximately or less than 0.83 in unit time. Because of cuss the crossover d?(F) and C(j) between the elastic
the increased external energy input, systems at higher condnd g-model behavior as the constant-strain constraint is
pressions are allowed a less restrictive limit of approximatelymplemented with increasing accuracy.
0.05p . Visual inspection of final configurations do not re-
veal significant fluctuations in time in contact network topol-
ogy or force magnitude in load-bearing structures. Compari- In the g model, the force histograrR(F) decays expo-
sons with test systems with longer run times also do nohentially at large forcegl1], andCy(j) is zero for nonzerg
show any significant quantitative differences. [11,33,34. These properties hold for a wide variety of
For a system of fixed sizk, the typical compression of choices of the distribution odj values.
the system can be controlled through variations in the disk Our results for the crossover from elasticganodel be-
spring constanK or applied external forcé . Typical  havior are obtained for the specific choice that tjie are
relative particle deformation8R is given by uniformly distributed in[0,1]. A two-dimensionalgq model
with this distribution ofg’s yields[11]

A. Scalar lattice model

1. Results for thegq model

sre > 1l L s B P(F)=4Fe %, (16)
Ne () (ai+a) Ne @ Kij '

1 For a system of infinite lateral extent, the in-plane force-

= (L force correlation functiorCy(j) = 6;o where dj, is the Kro-
walll 3, . Fuar 1T neckers function[11]. For a system of finite width, , force
= K (2ap) "= LK K (19 correlations must arise because all forces are positive, and
> the total force through a layer is fixed. As discussed in the

Appendix, assuming that this mechanism is the only one giv-
ing rise to correlations, one obtains that a 2D system of lat-
whereN¢ is the total number of contacts, the sums are ovegral extent, hasCq(j) given by
pairs of disksi andj in contact, andI=F,,,/L is the ex- ] _
ternal pressure. This estimate is approximate due to geomet- Co(j#0)=—(Ly=1) " 17
ric factors and distributional fluctuations; however, the scal-_ i , )
ing of deformations tdI/K should hold generally. In our This form fOI’CQ(j) agrees wnh our numerical results for the
simulations, the disk spring constatis held fixed and the 9 Model on lattices of finite width.
pressurell is varied to induce crossover between granular
and elastic behaviors. We define the reference preddure
=11, such that the relative particle deformatidfik~6.25 For elastic networks with different distributions of spring
x 10 4. The reference compression pressiifg yields a  constants, the probability distribution of vertical foreéF),
force histogram typical of the granular range, as discusseghown in Fig. 3, is narrower than that of tigemodel. Its
below in Sec. IV. After the initial compression withl functional form depends on the choice of spring constant
=1I1,, the applied pressure is increased in stagedIto distribution. Choosing the spring constakt§om a distribu-
=100, at whichéR~0.01. We also decrease the pressuretion either uniform ink or Gaussian irk yields P(F)’s that
from the initial II=1II, configuration down to II are roughly Gaussian while tH&(F)’s for networks for dis-
=0.0Io(6R~10"%) in order to approach the zero- tributions uniformly distributed or Gaussiankn! display a
deformation limit. Figure 2 shows a sample MD system sub+ail at largeF that is consistent with an exponential decay.
jected to the pressures 013,11,,10[1,, and 501,. Networks with Gaussian distributekl or k! exhibit nar-

For spheres with Hertzian contadissing Eq.(10)], the  rower P(F)’s than their counterparts with uniformly distrib-
deformation can be approximated BRI~ (I1D/2ap)?®.  utedk or k™.
For our simulation® is chosen to yield deformations of the  In contrast to the behavior of the force probability distri-
same order of magnitude as the linear contacts at the contbution P(F), the force-force correlation function values
pressionlI=1I,. The pressures studied are the same as fo€(j) are quantitatively indistinguishable for all the distribu-
the linear spring contact systems. tions of spring constants that we examined, as shown in Fig.

2. Elastic networks
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FIG. 2. Contact networks of a sample MD-generated packing of 1024 disks for different values of applied external pre3fiere
reference pressuid, is such that the average fractional change in particle radius at a contact is182% In the transition from granular
to elastic behavior, the number of contacts in the system increases, and the magnitudes of the contact forces become more homogeneous
While the width of contacts shown is a proportional to the force magnitude, they have been rescaled for each pressure, so direct comparisons
between subfigures is not possible.
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FIG. 3. Force probability distributiof?(F) for 128-column random spring configurations. The formR{f) in the elastic regime
depends on the distribution of spring constant valke$iowever, theseéP(F)’s for all distributions ofk occupy a narrow range in
comparison with the;-model granular regime result shown by the solid gray li@e.uniform k~2; (b) Gaussiark™; (c) uniform k; (d)
Gaussiank. We fit the functional formP(F)«<F”e BF to the randomk ! distributions with A=6.67 andB=7.95 for the uniform
distribution andA=14.70 andB=16.21 for the Gaussian distribution. For the randkrdistributions, we fitP(F)xe(F’l)z’Sz, with S
=0.47 for the uniform distribution an8=0.32 for the Gaussian distribution. No differences are seen between layer groups near the edge
or in the bulk of the systems.
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FIG. 4. Spatial force-force correlation functia®(j) for the FIG. 6. The two-point spatial correlation functi@y(j) for the
forces within the bulk layer groupingayers 201-30pin 128-  force fractiong within the bulk layer groupinglayers 201-300in
column elastic-regime scalar networks. In-plane correlat®(g) 128-column elastic-regime scalar networks. In-plane correlations
are shown in the main plot, while the vertical correlation peak de-Co(j) are shown in the main plot with vertical correlatidBg(0) in

cay given byC,(0) is shown in the inset. An observed nearest-the inset. As with the force-force correlations, varying the spring
neighbor in-plane anticorrelation appears to be robust with respeonstant distribution has a minimal effect on these correlations.

to variations in spring constant distributions. The vertical correla-

tion is similarly robust. q=q=0.5 for all distributions of spring constants examined.

The widths ofP(q) depend on the choice of distribution of
4. ForCy(j), the force-force correlation function within the spring constants, with the Gaussian distributednd k!
same layer, we see a strong anticorrelationjfell of mag-  once again narrowdstandard deviations,~0.16 and 0.15,
nitude ~0.30 that decays within=<8. For a vertical separa- respectively than their uniformly distributed counterparts
tion k>0, we see a simultaneous reduction in peak magni{o,~0.25 for randork and o,~0.21 for randonk ). All
tude(at j=0) and a broadening of peak width, but with the of the elastic networks display significant correlations be-
anticorrelation signature and decay joining the curve laid outweenq’s at different nodes as demonstrated in Fig. 6, which
by k=0. This correlation behavior arises because it is enershows the correlation functioB,(j) for all the random dis-
getically favorable; it enables stress to avoid the abnormallyripytions. The correlations betwegts are an important fac-
strong springs and to be directed toward the abnormallyor in determining the statistical distribution of the forces in
weak springs. these systems; Fig. 7 shows thagl-anodel system with the

The probability distributions of the redistribution fraction

a,P(q), shown in Fig. 5, are roughly Gaussian and peaked af !
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FIG. 7. Effect of spatial correlation af values on the probabil-
ity distribution of forceP(F). Force fraction probability distribu-
tions |~3(q) of the uniform distribution ofk elastic network, and a
bulk layer grouping(layers 201-30p for 128-column elastic- d-model system generated by choosipyalues from a Gaussian
regime scalar networks. The fits are Gaussians peakegd-at5, distribution centered a=0.5 with width o,=0.25, are shown in
with the width being dependent on the spring constant distributionsthe inset. While the twcf’(q) distributions appear nearly identical,
Gaussian distributed ! and k configurations are narrowgwith the spatial correlations in the elastic network yield a functionally
widths 0~0.16 and 0.15, respectivelthan their uniformly distrib-  different form for the probability distribution of forceB(F) than
uted counterpartéandomk,o~0.25; and randonk ™ 1,o~0.21). that of the uncorrelated-model system.

FIG. 5. Force fraction probability distributioR(q) within the
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FIG. 8. (a) Force probability distributioriP(F) at various stages of iteration for the bottom layer groupg#@l—500 of an ensemble of
16-column scalar networks. Initiallp(F) is similar to the distribution for uniformly distributeklsystems, shown by the grey dashed line.
The distribution broadens with increasing iterations with sriadigreement with granularmodel systems being achieved on order of 20
iterations. Further iterations are necessary to approach agreement for large v&dugés®P(F) distribution forg-model systems is shown
by the black dashed linéb) Force fraction probability distributioR(q) at corresponding stages of iteration. The distribution e&lues
approaches the expected uniform distribution within the first ten iterations.

sameP(q) as an elastic network with a uniform distribution 4. Iterated networks—crossover between
of k but with no correlations between tigs yields aP(F) elastic andg-model behavior
markedly different from the elastic network. In the iterated networks the target values of the are

No differences between the bulkayers 201-300and  fixed at the outset of iteration procedure. The initial state
edge (layers 1-100 and 401-5p@ections are detected in (grqth jteratiopis an elastic network with spring constants

the distributionsP(F) andl3(q) or the correlation functions given by k! ;=0;;/AY and kirj:(l_qi )/AY. Therefore,
Ci(j) andCy(j). The results for lattices with,=16 are the  the initial probability of node force®(F) and the spatial
same within statistical errors to the results frdm=128  correlation functionCq(j) are those of elastic networks with

lattices. spring constants chosen from a uniform distributiof.cfhe

In the elastic networks, forces in less than 1% of the,__,. P, P
branches are tensile, and no node in any of the networks realizedq distributionP(q) (as opposed to the distribution of

I I = i i -
subject to a tensile net force. Our results R({F) for uni- the t.argetq vgluss) '_S peaked a9‘°'5' and its §pat|a| cor
formly distributedk’s are very similar to those reported by rélation functionC,(j) reveals slight nearest-neighbor corre-
Sextonet al.[25], where a nontensile force constraint is en- lations fork=0 and anticorrelations gt=0 for k>0, once

forced. again matching elastic-regime behavior.
The probability distribution of node force®R(F), is
3. Iterated networks—the-model limit shown in Fig. 8a) for different values of iteration number

. . . As the number of iterations is increased, develops
We now discuss networks generated by our iterative algo- () P

rithm for converting an elastic network toggmodel system. an epr).nenFlaI.tan. at large forc~es. Figurébpshows the
First we verify that the generated networks eventually conProbability distribution of they's, P(q), versus the number
verge to theq model. After 100 iterations, the forces along Of iterations.P(q) approaches the target form of a uniform
the links of the iterated spring network are identical to thosedistribution after roughly ten iterations.
of the corresponding model to within 104, Figure 9a) shows our results for nearest-neighbor in-
A subtle point in the method is that our iterative schemeplane and vertical force-force correlation function values
yields a configuration in which the forces at the top andCo(1) andC,(0) as the number of iterationsis increased.
bottom boundaries of the iterated network may have nonzerbigure 9b) shows the corresponding force-fractigrg cor-
spatial correlations, as the initial iteration=0 system is relationsCo(1) andC,(0). While only about ten iterations
elastic. As one proceeds away from the top and bottonare necessary before the nearest-neighbor spatial correlations
boundaries, these correlations decay via a diffusive procedsetweerq values go to zero, in-plane force-force correlations
that takes on the order dif layers[11]. Thus forces at are still present after 100 iterations, although much reduced
different sites in the same layer are effectively uncorrelatedn magnitude from the initial elastiGterationn=0) value
only for systems with large aspect ratios. This result is conand approaching the expected zero-correlation value asymp-
sistent with our numerical observation that in fully iteratedtotically.
systems, correlations between forces at different sites in the The quantity8Sy that we use to characterize the cross-
same layer are present throughout thg=128 systems, over between elastic arggmodel behavior is defined in Sec.
while they are only present in the topmost and bottommostl. As Fig. 10 demonstrates, we obser§8y to decrease as
200 layers ofL,=16 systems. the number of iterationa is increased according to a power
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FIG. 9. (a) Nearest-neighbor in-plane and vertical force-force correlation valigés) andC,(0) at various stages of iteration for an
ensemble of 16-column scalar networks. The observed anticorrelation in nearest-neighbor forces decreases in magnitude as the number of
iterations increases, and appears to approach asymptotically the expected zero-correlation value. The vertical correlation increases in
magnitude with increasing iterations, indicating a stronger preference for the formation of force vertical chd@riééarest-neighbor
in-plane and verticad-q correlation value€,(1) andC,(0). Thespatial correlations for the force fractiordecrease rapidly in magnitude
as their values approach the uncorrelated taggdistribution.

law. A fit that assumes the dependence is of the féisy diameter 2. In contrast with the scalar model behavior,
«n“ yields a= —1.68+0.02. the MD systems exhibit a significant nearest-neighbor anti-

correlation for all applied external pressures. These results
for P(F) andCy(j) are independent of whether the samples
are compressed in stages or directly at a fixed preddure
Here we discuss the results of our MD simulations. Figure We define theq value of a disk as the fraction of total
11 showsP(F), the probability distribution of vertical forces vertical force received from its topward neighbors that is
F =7y, for MD systems under various applied pressuies transferred to its bottom leftward neighbors. The probability
As with the scalar modeF has been normalized so that the distribution ofq values,P(q), is shown in Fig. 12. We also

average vertical forc&=1 for each system configuration. calculate theg-q correlation valuesCy(j) and C,(0), al-
The progression oP(F) as pressure is increased is very though the large errors prevent the extraction of quantitative
similar both qualitatively and quantitatively to the crossovertrends. Narrowing the statistical errors would be computa-
from granular to elastic behavior in the scalar model latticetionally prohibitive.
systems. We calculate the force-force correlation values The number of contacts increases significantly with the
Co(j), shown in Fig. 11b), by defining disks to be in plane pressure, as shown in Fig. 13. As the magnitude of the typi-
with a tolerance of+-0.10ay andj in units of average disk cal overlap increases, additional contacts are formed. The
number of contacts at low pressures is below the theoreti-

-1 - — cally predicted average &= 2d [9], whered is the dimen-

E sion of the system, because the polydispersity in radii and the
i & 1 lack of gravity allow for the existence of “rattlers” which do
) o not support any of the external load.
293 Our results for the Hertzian contact systems are indistin-
] guishable from those of the linear springs throughout most of
z o | the range of pressures explored. At higher presslréd
@ 107 o 3 =3511,), the added stiffness of the Hertzian contacts leads

; LN ] to the slower narrowing oP(F).

B. Results of molecular dynamics simulations

3 % V. COMPARISON OF RESULTS OF MD SIMULATIONS
F ] AND OF SCALAR ELASTIC NETWORKS

105 I il Here we compare the behavior observed in the MD simu-
. lations and in the scalar elastic networks. Because different
Iteration schemes are used to induce the granular-elastic crossover in
FIG. 10. Deviation from constant strai#Sy, for each layerin a  the two systemsiterations in the scalar networks and exter-
scalar network system defined by E@). The solid line is a power ~nal pressure for M) we need to establish a common mea-
law fit of form 8Sycn™¢, with a=—1.68+0.02. Increasing itera- Sure to quantify a system’s position within the crossover re-
tions confirm the approach to the constant strain limit, which isgion. As the evolution of the probability distribution of
equivalent to they model. vertical forcesP(F), is qualitatively and quantitatively simi-
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FIG. 11. (a) Progression of vertical force probability distributi®{F) between elastic and granular regimes in MD-generated packings.
At a high applied pressud, P(F) fits a Gaussian functional form, as shown by the gray dashed line, similar to the elastic behavior of the
scalar network. At low pressur®(F) has widened and displays a roughly exponential tail. For comparidt), for the g model is shown
by the black dashed line. The apparent transition to the granular regime appears to occur bylidligf#yl . (b) In-plane two-point force
correlation function valu€(j) for various applied pressures. We define disks to be in-plane within a tolerarce.bfay , with spacings
j given in units of the average disk diameter2 Unlike the scalar networks, in the MD we see a consistent nearest-neighbor anticorrelation
for all pressures.

lar in the network model and in the MD simulations, we use We perform a check on this proposed scaling by consid-
matches in its form to establish a relationship between iteraering the analogous quantities of deviation from constant
tion numbern and applied pressurH. Figure 14a) shows strain in scalar system&Sy, given by Eq.(4), and deviation
matches in form between linear-force-law MD packings androm the infinitely hard, zero-deformation limit in MD sys-
iterated scalar network systems 1d/11,=100 and iteration tems calculated by
n=0, I1/TI1;=10 andn=10, andIl/II;,=1 and n=100.

From these matchings, we map the iteration nunmbierthe

2
scalar networks to the equivalent applied pressiiggn) in Sy = i E |13, 19
h ing the simpl li MD™ N . &~ 2 (19
the MD using the simple scalinNg5] c () (aj+ay)
[Ten) 100
—Ho ~Th (18) whereN is the total number of contacts and the sum is over
pairs of disksi andj in contact. We matchSS values for
3.0 . T : I ; . . . . [1/T1,=10 andn=10 by scaling the square deviation for the
L 8 Applied Pressure [T, | scalar network systems by a constant factor of 0.030. Figure
25 |4 3 o —
Al
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FIG. 12. Progression of the vertical force fractigulistribution Pressure (TI/T1)

f’(q) between elastic and granular regimes in MD-generated pack-

ings. Eac}‘q is calculated as the fraction of the vertical force com- FIG. 13. Number of contaclNc and coordination numbet for
ponent that is transferred to the bottom left neighbors of a disk. AiviD-generated packings of 1024 disks vs externally applied pres-
high pressuredl, we see a peaked form centeredgat0.5. For  sureIl. The number of contacts fits roughly to a forl=N,
decreasing pressurB(q) flattens out and is roughly uniform. The +a(Il/II,)?, whereN, is the number of contacts in the zero-force
increasing magnitude of the leftward bin with decreasing pressurémit. At low pressuresN, is slightly less than two contacts per
I1 is due to increasing probability of isolated “rattlers” and disks particle because of the presence of “rattlers” in the zero-gravity
with no bottom left neighbors. system.
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FIG. 14. (a) Matching vertical force probability distributior®(F) for iterated scalar spring networks and MD packings of particles with
a linear force law. We observe good agreement in the formR(6f) between iterationa=0 andIl/I1,=100n=10 andII/Il,= 10, and
n=100 andll/IT=1. (b) Normalized strain deviatiodSy and §Syp as a function of actual or equivalent applied pressure. The matching
of P(F) is used to generate a mapping between iteration values of the scalar networks and the pressures imposed on the MD systems. A
simple scaling approach yieldd,/I1,=100h. Additionally, 5Sy for the scalar networks is scaled by a factor of 0.030 to achieve
equivalence ah=10(I1/11,=10).

14(b) shows that this scaling yields reasonable agreemernthange from elastic to granular. MD systems do not exhibit
betweensSy and 6Sy,p over the crossover region. strong vertical correlations, in contrast with the scalar net-
In contrast to the agreement in the trendP¢F), quali- works whoseC,(0) value increases significantly as the

tative differences exist between the scalar network modegranular limit is approached.

and the MD simulations in spatial correlation function values  The large statistical uncertainties in ogug correlation
C;(k). Figure 1%a) shows the nearest-neighbor in-plane andfunctions for MD systems restrict us to making only qualita-
vertical force-force correlation valueG,(1) andC,(0), for tive behavior descriptions. ~The trend for in-plane nearest-
the crossover between elastic and granular regimes. Whileeighbor correlation behavi@y(1) in both systems is simi-
the MD Systems exhibit a Significant in-p|ane nearestJar. However, qualitative differences exist for vertical
neighbor anticorrelation throughout the crossover, a decreasrrelation valueC,(0): the MD systems display consistent
in its magnitude is seen in the scalar networks as the systenasiticorrelation behavior, while the scalar networks display
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FIG. 15. (a) Comparison of nearest-neighbor in-plane and vertical force-force correlation function @gliiesandC,(0) between MD
and scalar spring networks at various pressilifeand iterationsr. We see qualitative and quantitative differences in behavior. MD systems
exhibit a significant in-plane nearest-neighbor anticorrelation throughout the crossover region. This contrasts with the decrease seen in the
scalar networks as it approaches the granular ljraige iterationn). Strong vertical correlations develop in the scalar networks but not in
the MD systems(b) Nearest-neighbor in-plane and verticadj correlation function value€,(1) andC,(0). Thesizeable errors in the MD
values allows for only qualitative comparisons. Both systems exhibit similar trends for in-plane nearest-neighbor correlation values. How-
ever, qualitative differences exist for the behavior of vertical correlations: the MD systems display a constant anticorrelation throughout the
crossover region, while the scalar networks exhibit an anti-correlation in the elastic regime which decays rapidly to uncorrelated behavior as
the granular limit is approached.
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anticorrelation behavior in the elastic regime which decaysnust be uniform; it is plausible that rearrangements would
rapidly to uncorrelated behavior as the granular limit is ap-prevent strain gradients from forming. Second, implementing
proached. this constraint to increasing accuracy causes the force histo-

Our work indicates that experiments on granular media agramP(F) to evolve in a manner similar to that observed in
high pressures should yield a force histogram that differshe MD simulation as the pressure is decreasdd) has a
qualitatively from that observed at lower pressures. Experifail consistent with exponential decay at large forces in the
ments by Howellet al. [36], as well as experiments and granular limit, whileP(F) for the highly compressed system
simulations by Makseet al. [37], are in qualitative agree- is much narrower and decays more quickly at large forces.
ment with this result. Howelkt al. [36] controlled the tran- We note that implementing a nontensile force constraint
sition between granular and elastic behavior of slowlyalone, as in Ref.25], yields Gaussian decay P(F) at large
sheared systems in a 2D Couette geometry by varying thforces even at the lowest pressures, in qualitative disagree-
packing fractiony within a range 0.7% y<0.81. The aver- ment with the MD results of ourselves and othgir§,18,31.
age force/length on a particle increases wjthFor lower While this success in describing the evolution of the force
values ofy, the distribution of large stresses is asymptoti- histogram and the scalar model’s simplicity in both formula-
cally exponential, while the distribution of stresses has &ion and implementation make it an attractive platform for
Gaussian form at higher packing fractiops Makseet al.  the study of media models, the discrepancy in the behavior
[37] applied increasing pressure to three-dimensional packef the correlation function behavior with the MD simulation
ings of spherical glass beads to achieve the crossover beesults needs to be addressed. The scalar model assumes ex-
tween granular and elastic behavior, and also performed Mlicitly that in the granular regime the stress redistribution
simulations on 3D systems. Makse al. observed a cross- fractionsq at different sites are uncorrelated. The extent to
over in the force histograr®(F) in a pressure range that is which this condition is valid needs to be examined in more
consistent with our 2D MD results. detail. Spatial correlations of thgfs can strongly affect the

An interesting question is whether the persistent in-plangrobability distribution of stresB(F) [28,38 but the degree
nearest-neighbor anticorrelation in the forces that is observe which these correlations exist in real packings has not
in the MD simulations is present in experimental systemsbeen settled. A possible source of spatial correlations in the
Mueth et al. [15] did not find evidence of correlations be- g's is the constraint that nontensile vector forces must be
tween different sites in the same horizontal layer; anybalanced. However, vector generalization of tipenodel
nearest-neighbor anticorrelation in the experiment is smallesystems proposed to date have required arbitrary constraints
than the experimental resolution. However, they measured ® be imposed to limit the scale of stress components perpen-
different correlation functionk,(r), defined as dicular to the direction of applied fordd.2]. Clarification of

the roles of vector force balance and contact formation is key

Ne Ns to identifying and characterizing the processes governing
;1 j:i2+1 (rij—nfif; stress transmission beyond those that have been implemented
Kq(r)= N Ng , (20 in the scalar _model. S o
S sri-n) In conclusion, we have shown that similarities exist in the
=15 " evolution of the probability distribution of stressB¢F) in

the crossover between elastic and granular regimes for a sca-
where the sums are over thg particles in the bottom layer, lar lattice model, and MD simulations of slightly polydis-
f; is the force at position; in the bottom layer, and;; perse disks. However, the systems exhibit qualitative differ-
=|r,—r|. Calculation ofK y(r) from the numerical data for €NCeS in the two-point force correlation functidy(j).
our MD simulations yields values of the correlation function FUrther investigation of the systematic influences leading to
that are smaller than the error bars in the experiment. Conf1® Spatial correlations between forces is necessary for the
parison with Ref.[15] is necessarily qualitative since the development of a successful model of stress transmission in

experiments measure the properties at the surface of a 3@yanular media.
packing while our MD results are calculated using numerical
data from the bulk of a 2D system. ACKNOWLEDGMENTS

We thank Alexei Tkachenko and Tom Witten for a key
suggestion, and Rick Clelland, Heinrich Jaeger, Dan Mueth,

We have investigated the crossover between elastic an@id Nagel, Joshua Socolar, and Bob Behringer for useful
granular stress transmission in both a 2D scalar lattice modgionversations. This research was supported by the MRSEC
and in molecular dynamics simulations of slightly polydis- program of the NSF and by the Petroleum Research Fund of
perse disks. The evolution &f(F), the probability distribu- the American Chemical Society.
tion of stresses, is very similar in the lattice model and in
MD. However, the behavior of the spatial correlation func-
tions for stressC,(j), differs qualitatively.

Our investigations of the scalar model have several impli-
cations for the development of granular media models. First In the g model in the limit of infinite size, forces at dif-
we have shown that implementing a local constraint can conferent sites in the same layer are completely uncorrelated. In
vert an elastic network to @ model. This constraint has the a system of finite transverse extent, the requirements that the
natural physical interpretation that the strain in the systenotal force through every layer is identical and there are no

VI. DISCUSSION

APPENDIX: FINITE-SIZE CORRECTION TO
CORRELATION FUNCTION CALCULATION
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tensile forces lead to a finite-size correction to the correlation =0. (A3)
function. This appendix discusses this correction.

We characterize the correlations between force fluctua- On a lattice of finite width [, site9, the multipoint force
tions on sites in the same row using the correlation functiorprobability distribution function must be consistent with the

L, facts that first, the total force down every layer is fixed, and

2 SFE. SF sec_ond, no forpe is negative. This implies the following.
1 L | & O ImOT me (i) The maximum force on any node in any layer cannot
Col)=1 P I ; (A1) be larger tharF pae=L,F.
e E 5|:|2m (ii) The forceF , at a nodex contributes to the total force
m=1 '

along a layer, and hence affects the sum of the forces through

the remaining sites in the layer. Definifig as the average

where oF| m=F n—F is the deviation of the force at a site ¢,..0 yhrough all the sites in the layer other than siteve
in row | and columnm from the average forc&. For aq  have

model with a uniform distribution ofy’s, in a system of
infinite transverse extent, this correlation function i4] LF-F, — F,—F S5F,
L,—1

poof e g R g e
1, j=0 I-x_l I-x_l
(A2)

(Ad)

Co=|y 2o
) Assuming that the only correlations present in the finite
This result follows from the fact tha®(F,,F3), the prob- system are.t'hosg re.q“ifed to §ati_sf_y these condjtions and that

ability that the force through node is F"a aﬁnd the force the probability distribution of individual forces is the same

: ; — for all sites in the row(satisfied by systems with periodic
through nodgs at the same horizontal level K, is factor boundary conditions the joint probability distribution in the

izable: . . .
'z system with finiteL, can again be written
P(F.,Fp)=P(F,)P(Fp).
It, f P(F,.Fp) L p|fa|p| E2 (A5)
As a result, fora# g, a ==P| = =
% p PTEELF)LE
y X
(8F ,6F 5= lim > > OF mdFim but now the distributions are subject to the constraints
I=1 m=1

Ly ,Ly—>°O y=X

Ly Ly
=J f dF dF 30F ,6F 4P(F . ,F ) JO P(w)do=1, JO wP(w)do=1  (A6a)
0JO

© (o Ly—1_ Ly—1 _
= JO fo dF,dF z6F ,8F sP(F,)P(Fp) fo P(v)dv=1, fo vP(v)dv=1. (ABb)
[ * In the limit of L,—, we expect corrections tB(F) to be
_< fo dFaaF“P(F“)) ( fo dFﬁ&FﬁP(Fﬂ)) of order 1L, as the fluctuations in the forces at the sites are

of order unity. As we will see, with the assumptions that we
_ _ = have made, the finite-size correction to the correlation func-
_[L dFoF P(F)} _{ fo dF(F F)P(F)} tion does not depend on the form of the probability distribu-
o tion P. Taking the new constraints into account, éo¥ 8 we
=[F—-F]2 have

L Ly—F,
<(5|:a(5|:5>=fO XdFaJOX dF 36F ,6F 4P(F o ,F ) (A7)
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Fa ii Lx_l F ~
P :):f dv V—,.,:>P(V)
F/)FJo F

if LXildvv’ls( v)— foLfld vP(v)

FJo

1 Fa Lx—1 ~ Lx—1 ~
(1_Lx_1(?>)f0 dva(v)—fo dvP(v)

w—1) (L1 L=l
(1—m) fo dVVP(V)_fO dvP(v)

=_2LLde(w—1)P(w)

. (Ly
:sz do(w—1)P(w)
0

Ly—1 - w—1 (L1 -
j dv(v—l)P(v)—L —lJo dVVP(V)}

0 X

:EZ[ JOLde(w—1)P(w)J’OLX71dv(v—l)'l5(v)—L ];lfol_xdw(w—l)zp(w) JOLfldvv'ﬁ(V)

= 2
=— Lx—lfo do(w—1)°P(w).

As the correlation function is normalized with respect to the average fluctuation size,

Lx EZ Ly
SF | mOF | m+ i - f do(w—1)?P
- - 1 Ly mE:l I,mOT 1 m+j <5Fu5FB>a¢B Lx—l 0 w(w ) (w) B
Co(j#0)= lim = > - e T =—(L—17" (A8)
Ly—oeY 17 > sF2 (6F%) sz dw(w—1)°P(w)
m=1 ' 0

which is independent of the form of tH&(F). As L,—»,Cy(j #0)—0, as expected.
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